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Abstract

Fluid-conveying pipes with supported ends buckle when the fluid velocity reaches a critical value. For
higher velocities, the postbuckled equilibrium shape can be directly related to that for a column under a
follower end load. However, the corresponding vibration frequencies are different due to the Coriolis force
associated with the fluid flow. Clamped–clamped, pinned–pinned, and clamped–pinned pipes are
considered first. Axial sliding is permitted at the downstream end. The pipe is modeled as an inextensible
elastica. The equilibrium shape may have large displacements, and small motions about that shape are
analyzed. The behavior is conservative in the prebuckling range and nonconservative in the postbuckling
range (during which the Coriolis force does work and the motions decay). Next, related columns are
studied, first with a concentrated follower load at the axially sliding end, and then with a distributed
follower load. In all cases, a shooting method is used to solve the nonlinear boundary-value problem for the
equilibrium configuration, and to solve the linear boundary-value problem for the first four vibration
frequencies. The results for the three different types of loading are compared.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The behavior of fluid-conveying pipes has been studied extensively [1,2]. In general, both static
instability (buckling) and dynamic instability (flutter) may occur. If the ends of a single-span pipe
see front matter r 2005 Elsevier Ltd. All rights reserved.
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are either clamped or pinned, buckling occurs at a critical value of the fluid velocity. The
fundamental frequency of vibration for small motions about the straight pipe becomes zero at the
critical velocity. As the velocity is increased above its critical value, the pipe takes on postbuckled
equilibrium shapes with ever-increasing displacements.

Prebuckling vibrations of end-supported pipes, as a function of the fluid velocity, have been
investigated theoretically and experimentally in a number of studies, including Refs. [1–10].
Sorokin and Terentiev [11] considered a pinned–pinned pipe which was buckled by an axial force
or deflected by two applied moments, and then subjected to a fluid flow which did not affect the
equilibrium shape of the pipe. Small vibrations about equilibrium were investigated.

Postbuckling of pipes with immovable ends was investigated by Holmes [12] and others.
Deflections can become large if one end of the pipe is allowed to slide axially. Equilibrium shapes
for such cases were described in Refs. [13–15] using an elastica analysis for the pipe. In Ref. [15],
vibrations also were examined. The pipe was hung at the bottom of a tank which contained water
at constant height. The top of the pipe was clamped and the bottom was pinned. In the analysis,
the weights of the pipe and fluid were included. The fluid velocity in the pipe was an unknown
function of time. Analytical and experimental results were presented.

Small vibrations about postbuckled equilibrium configurations are analyzed here. Each end of
the pipe is either clamped or pinned, and the downstream end is free to move in the axial
direction, as depicted in Fig. 1. Damping and gravitational effects are neglected. Results for free
vibrations about the straight pipe, when the velocity is less than the critical value, are obtained
first. These frequencies can be used in practice to predict the critical velocity by extrapolation
from a few results at low velocities [16].

For fluid velocities above the critical value, the equilibrium shapes (which may involve large
displacements) are determined, and the first four frequencies for small vibrations about these
configurations are computed. The corresponding motions decay with time. As the velocity
increases, the frequencies do not necessarily change in a monotonic manner. The problem is
formulated in Section 2, and numerical results are presented in Section 3.

Next, related columns subjected to follower loads are treated using the same type of
formulation and solution procedure. Much attention has been given to cantilevered columns
which exhibit dynamic instability (flutter) under sufficiently large follower loads [17]. If the ends
are supported, initial instability is caused by buckling (divergence), as for pipes [18]. The
postbuckling deflections, and small vibrations about the equilibrium configurations, are examined
here for a follower end load (Section 4) and a distributed follower load (Section 5). For the first of
these cases, the postbuckled equilibrium shape is the same as for the associated pipe, and the
frequencies can be compared directly. Finally, concluding remarks are given in Section 6.
L
X

Y

U

L
X

Y

U

L
X

Y

U

(a) (b) (c)

Fig. 1. Geometry of pipe. (a) clamped–clamped; (b) pinned–pinned; (c) clamped–pinned.
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2. Formulation for pipe

The pipe is assumed to be an elastica, which is thin, flexible, inextensible, and unshearable, with
bending moment proportional to curvature. Its thickness is assumed to be small relative to its
diameter, which is small relative to the length. The pipe is uniform with constant bending stiffness
EI, constant mass per unit length mp, and length L. The fluid has constant velocity U and constant
mass per unit length mf , and its profile is uniform (i.e., plug flow is assumed [2]). Damping and the
weights of the pipe and fluid are neglected. Planar motion is considered.

From the left end in Fig. 1, the arc length is S, the axial and transverse coordinates are X(S,T)
and Y(S,T), respectively, and the rotation angle in radians is yðS;TÞ, where T denotes time. The
bending moment M(S,T) is positive if it tends to produce positive curvature. The horizontal force
in the column is denoted P(S,T) and is positive if it is compressive. The vertical force is Q(S,T)
and is positive if downward on a positive face (i.e., if it tends to rotate the pipe clockwise).
Dimensional vibration frequencies are denoted O.

Based on geometry, moment–curvature relationship, and dynamic equilibrium, the governing
equations are as follows [13,14,19]:

X s ¼ cos y; Y s ¼ sin y; EIys ¼ M; Ms ¼ Q cos y� P sin y,

Ps ¼ �ðmf þ mpÞX TT � 2mf UX ST � mf U2X SS,

Qs ¼ �ðmf þ mpÞY TT � 2mf UY ST � mf U2Y SS, ð1Þ

where subscripts S and T denote partial derivatives.
The analysis is carried out in terms of the nondimensional quantities

x ¼
X

L
; y ¼
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L
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S

L
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PL2

EI
,
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QL2

EI
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T

L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI
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s
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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r
,
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ffiffiffiffiffiffi
mf

EI

r
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. ð2Þ

In nondimensional terms, the governing equations are

xs ¼ cos y; ys ¼ sin y; ys ¼ m; ms ¼ q cos y� p sin y,

ps ¼ �xtt � 2
ffiffiffi
b

p
uxst � u2xss; qs ¼ �ytt � 2

ffiffiffi
b

p
uyst � u2yss. ð3a2fÞ

The subscript e denotes quantities associated with the equilibrium state, and the subscript d is
used for dynamic quantities related to small free motions about equilibrium. The variables are
written in the following complex form:

xðs; tÞ ¼ xeðsÞ þ xdðsÞe
iot; yðs; tÞ ¼ yeðsÞ þ ydðsÞe

iot,

yðs; tÞ ¼ yeðsÞ þ ydðsÞe
iot; mðs; tÞ ¼ meðsÞ þ mdðsÞe

iot,

pðs; tÞ ¼ peðsÞ þ pdðsÞe
iot; qðs; tÞ ¼ qeðsÞ þ qd ðsÞe

iot. ð4Þ
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With the use of Eq. (4) in Eqs. (3a–f), the governing equations for equilibrium are found to be

x0
e ¼ cos ye; y0

e ¼ sin ye; y0e ¼ me,

m0
e ¼ qe cos ye � pe sin ye; p0

e ¼ �u2x00
e ; q0e ¼ �u2y00

e ð5a2fÞ

and the governing linear dynamic equations are given by

x0
d ¼ �yd sin ye; y0d ¼ yd cos ye; y0d ¼ md ,

m0
d ¼ ðqd � peydÞ cos ye � ðpd þ qeydÞ sin ye,

p0d ¼ o2xd � 2i
ffiffiffi
b

p
uox0

d � u2x00
d ,

q0d ¼ o2yd � 2i
ffiffiffi
b

p
uoy0d � u2y00

d . ð6a2fÞ

If Eqs. (5e,f ) are integrated and Eqs. (5a,b) are used, one obtains

pe ¼ po � u2 cos ye; qe ¼ qo � u2 sin ye, (7a,b)

where po and qo are constants. Substituting Eqs. (7a,b) into Eq. (5d) yields

m0
e ¼ qo cos ye � po sin ye. (8)

Eqs. (7a,b) are used in Eq. (6d). Also, Eqs. (6a,b) and their derivatives are substituted into
Eqs. (6e,f ). This results in

m0
d ¼ ðqd � poydÞ cos ye � ðpd þ qoydÞ sin ye þ u2yd ,

p0
d ¼ o2xd � ð2i

ffiffiffi
b

p
uoyd þ u2mdÞ sin ye þ u2meyd cos ye,

q0
d ¼ o2yd � ð2i

ffiffiffi
b

p
uoyd þ u2mdÞ cos ye þ u2meyd sin ye. ð9Þ

If the left end s ¼ 0 is clamped, the boundary conditions there are xe ¼ ye ¼ ye ¼ xd ¼

yd ¼ yd ¼ 0. If it is pinned, xe ¼ ye ¼ me ¼ xd ¼ yd ¼ md ¼ 0. Axial sliding is permitted at the
end s ¼ 1. If that end is clamped, ye ¼ ye ¼ pe ¼ yd ¼ yd ¼ pd ¼ 0 there. If it is pinned,
ye ¼ me ¼ pe ¼ yd ¼ md ¼ pd ¼ 0. Based on Eq. (7a), the boundary condition peð1Þ ¼ 0 can be
replaced by u2 cos yeð1Þ ¼ po.

In nondimensional terms, the sum H of the kinetic energy and strain energy is

H ¼
1

2

Z 1

0

ðx2
t þ y2

t þ y2
s Þds. (10)

The time rate of change of H can be put in the form

dH

dt
¼ �u

ffiffiffi
b

p
½xtð1; tÞ�

2 � u2xtð1; tÞ cos yð1; tÞ (11)

by making use of Eqs. (3a–f), the derivatives of Eqs. (3a,b), and the boundary conditions. On the
right-hand side of Eq. (11), the first term (which is negative) represents the rate of work done by
the Coriolis force; it is proportional to the fluid velocity, the square root of the mass ratio
parameter, and the square of the axial velocity of the pipe at the sliding end. The second term
corresponds to the centrifugal force, and for the clamped–clamped pipe it is the time derivative of
�u2xð1; tÞ. For motions about the postbuckled equilibrium configuration, the system is not
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conservative, and in the numerical results the associated values of o are complex with positive
imaginary part, so that the motions about the postbuckled states decay with time.
3. Numerical results for pipe

The critical fluid velocities for the clamped–clamped, pinned–pinned, and clamped–pinned
pipes are uCR ¼ 2p, p, and 4.493, respectively. Postbuckled equilibrium shapes for higher values of
velocity are obtained from Eqs. (5a–c) and (8). These first-order equations are solved numerically
using a shooting method with the subroutines NDSolve and FindRoot in Mathematica [20]. For
the clamped–pinned pipe, qo is specified, and po and með0Þ are varied until yeð1Þ ¼ með1Þ ¼ 0 with
sufficient accuracy; then u is obtained from u2 cos yeð1Þ ¼ po. For the clamped–clamped and
pinned–pinned cases, the equilibrium shapes are symmetric about s ¼ 0:5, and qo ¼ 0, so there is
one less unknown parameter to be varied.

The maximum value of yeðsÞ is denoted ymax, which occurs at s ¼ 0:5 for the clamped–clamped
and pinned–pinned cases. Curves of u vs ymax are presented in Fig. 2, along with some associated
equilibrium shapes. The solid curve for the clamped–clamped pipe is stopped when the left and
right parts of the pipe contact each other, which occurs when u ¼ 8:50 and ymax ¼ 0:403 [21]. The
shape of the pipe at this stage is shown in Fig. 2. The other clamped–clamped shapes correspond
to ðu; ymaxÞ ¼ ð6:4; 0:167Þ and (6.8, 0.309). For the dashed and dotted curves, the velocity u
approaches infinity as the magnitude of the pipe rotation ye at s ¼ 1 approaches p=2. This occurs
as ymax approaches 0.31 for the clamped–pinned pipe and 0.38 for the pinned–pinned case. The
equilibrium shapes depicted with these curves correspond to ðu; ymaxÞ ¼ ð5:7; 0:202Þ and (4.0,
0.246), respectively, for the clamped–pinned and pinned–pinned pipes.
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Fig. 2. Equilibrium paths for pipe (velocity vs maximum deflection) and column with end follower load (square root of

load vs maximum deflection) in nondimensional terms. ________, clamped–clamped; ....., pinned–pinned; - - - -,

clamped–pinned.
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To determine vibration frequencies, Eqs. (6a–c) and (9) are solved numerically. These equations
are linear in the dynamic variables, but their coefficients are functions of s and are not known
analytically. Results from the equilibrium solution are utilized, i.e., values of u, po, qo, and either
yeð0Þ or með0Þ. Since the amplitude of the free vibration is arbitrary, the value of one of the
dynamic variables at s ¼ 0 is specified (e.g., qdð0Þ ¼ 0:1). The other two unknown values of
variables at s ¼ 0, and the frequency o, are varied until the three conditions at s ¼ 1 are satisfied.
By guessing the value of o in different ranges, frequencies corresponding to different modes can
be computed.

First, prebuckling vibrations are analyzed ð0ououCRÞ. The pipe is straight, so that yeðsÞ ¼ 0.
In this prebuckling range, the values of the nondimensional frequency o are real. Due to the
Coriolis force, the pipe does not exhibit classical modes. When it vibrates at one of the vibration
frequencies, the shape changes with time [1,2].

For the mass ratio parameter b ¼ 0:5, the first four frequencies o or their real parts (if o is
complex) are plotted as solid curves in Figs. 3–5 for the three sets of boundary conditions,
respectively. In the prebuckling range, the frequencies decrease as the velocity increases, and the
fundamental frequency is zero when u ¼ uCR (denoted by a dotted horizontal line). In this range,
if u2 were plotted vs o2, the curves would be almost linear.

For postbuckling, small vibrations about the nontrivial equilibrium configuration are
examined. The lowest four real parts of the solutions o, corresponding to the oscillatory part
of the motion for each of these modes, are plotted in Figs. 3–5. These real parts will be called the
frequencies.

As the velocity increases beyond its critical value, the frequencies do not behave monotonically.
In Fig. 3 (clamped–clamped pipe), the fundamental frequency increases in the range shown, the
second frequency increases and then decreases, and the third and fourth frequencies decrease
significantly and then increase. For the pinned–pinned case in Fig. 4, the first frequency increases
and then decreases, the second frequency decreases, increases, and then decreases, and again the
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Fig. 3. Vibration frequencies for clamped–clamped boundary conditions. _____, u for pipe (b ¼ 0:5); - - - - -, r1=2 for

column with end follower load.



ARTICLE IN PRESS

Re(�)
0 20 40 60 80 100 120 140 160 180

u,
 r

1/
2

0
1
2
3
4
5
6
7
8
9

10
11
12
13

Fig. 4. Vibration frequencies for pinned–pinned boundary conditions. _____, u for pipe (b ¼ 0:5); - - - - -, r1=2 for column
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third and fourth frequencies decrease and then increase. In Fig. 5 (clamped–pinned pipe), the first
frequency increases and then decreases, the second frequency increases in the range shown, and
the third and fourth frequencies decrease and then increase.

The imaginary parts of o represent the rates of decay of the modes following a perturbation
from the buckled equilibrium state. As the velocity increases past the critical value, the rates
increase from zero. The decay rate is larger for the first mode than for any of the next three modes
until u reaches 7.4, 5.0, and 22.2 for the clamped–clamped, pinned–pinned, and clamped–pinned
pipes, respectively, and the corresponding values of the imaginary part of o are 5.8, 4.0, and 15.5.
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The value of the mass ratio parameter b affects the frequencies. For vibrations about a buckled
state, the first frequency decreases as b increases. However, higher frequencies sometimes decrease
and sometimes increase as b is increased.
4. End-supported columns with follower end load

Thompson and Lunn [13] showed that the postbuckled equilibrium shapes for the pipes in Fig.
1 are the same as for a column with the same boundary conditions and subjected to a follower
load R ¼ mf U2. The case of clamped–pinned boundary conditions is sketched in Fig. 6(a). Axial
sliding is permitted at the loaded support. In nondimensional terms, the load is

r ¼ RL2=EI (12)

and correlates with u2 for the pipe. It is interesting to compare the vibration frequencies for small
motions about the same equilibrium shape (as well as vibrations about the prebuckled straight
equilibrium configuration).

Eqs. (3)–(9) are valid here if u is set equal to zero. The boundary conditions are the same as for
the pipe except that the conditions pe ¼ pd ¼ 0 at s ¼ 1 are replaced by pe ¼ r cos ye and
pd ¼ �ryd sin ye. If H is defined by Eq. (10), its rate of change is given by Eq. (11) if b is set equal
to zero and u2 is replaced by r. For the clamped–clamped column, the rate of change of H þ

rxð1; tÞ is zero and the system is conservative.
For these columns with follower end loads, the equilibrium paths in Fig. 2 are valid if the

ordinate is taken as r1=2. (In the clamped–clamped case, the end load remains parallel to the x-axis
and does not change direction.) The frequencies are not equal to those for the pipe, due to the
Coriolis force acting on the pipe. Here, the frequencies are real under both prebuckling and
postbuckling conditions. Numerical results are shown by the dashed lines in Figs. 3–5, with the
ordinate being r1=2.

For the clamped–clamped case (Fig. 3), the first frequency is higher than that for the pipe except
at low loads. The other three frequencies are lower for most of the prebuckling range and at least
part of the postbuckling range, after which the second and third frequencies become higher and
then the third becomes lower again shortly before self-contact occurs.

For the pinned–pinned case (Fig. 4), the frequencies for the end load and the pipe are almost the
same under prebuckling conditions. For vibrations about the postbuckled equilibrium state, the
corresponding column frequencies are lower except for the fundamental frequency when the load
becomes very large. For the clamped–pinned case (Fig. 5), again the prebuckling frequencies are
similar, and for postbuckling, the first three frequencies are lower for the column in the range
shown, and the fourth frequency becomes significantly lower for sufficiently high loads.
R

F

(a) (b)

Fig. 6. Geometry of column. (a) end follower load; (b) distributed follower load.
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5. End-supported columns with distributed follower load

Columns with distributed follower loads have been qualitatively related to pipes conveying
fluid. Fig. 6(b) shows the clamped–pinned case with constant distributed compressive follower
load F per unit length. The nondimensional load is defined by

f ¼ FL3=EI (13)

and critical loads for clamped–clamped, pinned–pinned, and clamped–pinned boundary
conditions are 80.26, 18.96, and 57.01, respectively [18]. An elastica formulation for equilibrium
of the pinned–pinned case (Pflüger’s column) was presented by Atanackovic and Simic [22], but
no postbuckling conditions were considered.

Eqs. (3a–d), (4), (5a–d), and (6a–d) still apply, and Eqs. (3e,f), (5e,f), and 6(e,f) are replaced by
the following:

ps ¼ �xtt � f cos y; qs ¼ �ytt � f sin y, (14)

p0e ¼ �f cos ye; q0
e ¼ �f sin ye, (15)

p0d ¼ o2xd þ f yd sin ye; q0
d ¼ o2yd � f yd cos ye. (16)

The boundary conditions are the same as for the pipe, with axial sliding allowed at s ¼ 1. Making
use of Eqs. (3a,b), integration of Eq. (15), and the boundary condition peð1Þ ¼ 0, one can obtain

pe ¼ po � fxe; qe ¼ qo � fye; po ¼ fxeð1Þ. (17)

With H given by Eq. (10), its rate of change is

dH

dt
¼ �f

Z 1

0

ðxt cos yþ yt sin yÞds. (18)

Equilibrium paths are plotted in Fig. 7 for 0ofo150. The equilibrium shapes shown
for the clamped–clamped (solid curve) and clamped–pinned (dashed curve) columns correspond
to ðf ; ymaxÞ ¼ ð129:4; 0:302Þ and (105.2, 0.279), respectively. For the pinned–pinned column
(dotted curve), the postbuckling path starts at the critical load f ¼ 18:96 and rises until it reaches
a limit (maximum) point at f ¼ 36:1. Then it turns around, and the curve is continued until f ¼ 0.
The equilibrium shape on the initial part of the path corresponds to ð f ; ymaxÞ ¼ ð23:8; 0:245Þ, the
next one is at the limit point ð f ; ymaxÞ ¼ ð36:1; 0:372Þ, the third shape is at the point ð f ; ymaxÞ ¼

ð19:5; 0:290Þ for which the column is tangential to the x-axis (i.e., ye ¼ p) at s ¼ 0, and the final
shape (which is symmetric with respect to the x-axis) is at f ¼ 0 and ymax ¼ 0:129.

The equilibrium states between the limit point and the final point at f ¼ 0 are unstable.
As the load f is increased from zero, a smooth transition to stable nontrivial equilibrium states
occurs as f passes 18.96. The transverse deflection increases until f ¼ 36:1, and if the load is
increased further, the column experiences a sudden collapse. This type of equilibrium path,
with a bifurcation point followed by a limit point, is unusual. More common is secondary
bifurcation, in which a postbuckled equilibrium path becomes unstable when it is intersected by
another path [23].
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Fig. 8. Load vs vibration frequency for clamped–clamped column with distributed follower load.

ymax

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

f

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

Fig. 7. Equilibrium paths (load vs maximum deflection) for end follower load in nondimensional terms. ________,
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The vibration frequencies are real for small motions about the stable equilibrium states. The
first four frequencies are plotted in Figs. 8–10 for the clamped–clamped, pinned–pinned, and
clamped–pinned columns, respectively. After the critical load is reached (dotted line), initially the
first two frequencies increase and the next two frequencies decrease, except for the second
frequency in Fig. 9. For the pinned–pinned column (Fig. 9), the fundamental frequency decreases
to zero at the limit point, as it must, and the curves are not continued further since the column
collapses. Corresponding to the unstable equilibrium states in Fig. 7, the fundamental mode
would exhibit an exponentially growing motion (i.e., o is an imaginary number in the solution of
the linear vibration problem).
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Fig. 9. Load vs vibration frequency for pinned–pinned column with distributed follower load.
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Fig. 10. Load vs vibration frequency for clamped–pinned column with distributed follower load.
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6. Concluding remarks

Postbuckling and vibrations were investigated for pipes and columns with ends that do not
deflect transversely. Axial sliding was permitted at one end. It was assumed that deflections occur
in a plane. Each pipe and column was modeled as an inextensible elastica. This allows large
displacements in equilibrium, and makes it easy to include both transverse and axial inertia
forces in the governing equations, and to treat the axial boundary condition at the sliding
end. (Extensibility and a nonlinear moment–curvature relation could easily be added to the
formulation [24,25].) It was assumed that the cross-section does not change during deflection.
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Numerical solutions were obtained with the use of a shooting method, in which the boundary-
value problem was treated as an initial value problem. First the equilibrium shape was obtained,
and then small vibrations about this configuration were analyzed.

For the pipe, the fluid velocity was assumed to be constant (which may not be realistic in some
physical situations, especially at high velocities). Periodic motion (but not classical normal modes)
can occur if the fluid velocity is less than its critical value (i.e., under prebuckling conditions, when
the equilibrium configuration of the pipe is straight). For free vibrations about the postbuckled
equilibrium states, the motion decays. This is due to the Coriolis force and sometimes the
centrifugal force, in conjunction with axial sliding at the downstream end; no damping is assumed
in the analysis. The frequency of the oscillatory part of the motion was computed for the first four
modes with the mass ratio parameter set at b ¼ 0:5. In the range 0obo1, if b increases, the
nondimensional fundamental frequency decreases (as shown in Ref. [1] for the pinned–pinned
pipe and 0ououCR), whereas the higher nondimensional frequencies may either decrease or
increase.

One can define the ‘‘corresponding nongyroscopic system’’ to the pipe as that system for which
the Coriolis term is not included (i.e., b ¼ 0). This system corresponds to a column subjected to an
axial end load. At any velocity below the critical one, the computed fundamental frequency for
the pipe in the cases treated here is always lower than that for the corresponding nongyroscopic
system. This is consistent with a general result for discretized systems [26,27], and the
corresponding nongyroscopic system can be used to obtain an upper bound on the prebuckled
fundamental frequency.

For the corresponding column subjected to a compressive follower load at the axially sliding
end, the postbuckled equilibrium shapes are the same as those for the pipe with fluid velocity
related to the square root of the load. Vibration frequencies for the two systems do not correlate
directly, due to the Coriolis force acting on the pipe, and in the postbuckled range the frequencies
may be quite different for the pipe and the column with follower end load.

The corresponding columns subjected to a uniformly distributed follower load were also
analyzed. Motions about the prebuckled and postbuckled equilibrium states do not decay for the
follower-load problems treated here. An interesting result is that the postbuckled equilibrium
configuration for the pinned–pinned case with distributed load (Pflüger’s column) becomes
unstable at a limit point when the load reaches a certain magnitude, and the column then
collapses.

If small damping were added to the formulations here, the frequencies would not change
drastically. There is no sudden ‘‘destabilization’’ of a stable equilibrium state, as may occur for a
nonconservative system which exhibits dynamic instability [2,17], such as a cantilevered fluid-
conveying pipe or a cantilevered column subjected to a compressive follower load.

Variation of the fundamental vibration frequency as a function of velocity or load can be
utilized to predict the critical (buckling) condition. If the fundamental frequency can be measured
at a few velocities or loads, then these values can be extrapolated to obtain an estimate or upper
bound for the critical velocity or load. This technique can be improved by plotting the load or the
square of the velocity as a function of the square of the fundamental frequency, so that the curve
is almost linear.

Potential applications of this work to highly flexible pipes and hoses are described in Ref. [2].
They include mass-flow meters, vibration-attenuation devices, and deep-water risers.
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